All two-dimensional, flexible, transparent, and thinnest thin film transistor.
نویسندگان
چکیده
In this article, we report only 10 atomic layer thick, high mobility, transparent thin film transistors (TFTs) with ambipolar device characteristics fabricated on both a conventional silicon platform as well as on a flexible substrate. Monolayer graphene was used as metal electrodes, 3-4 atomic layers of h-BN were used as the gate dielectric, and finally bilayers of WSe2 were used as the semiconducting channel material for the TFTs. The field effect carrier mobility was extracted to be 45 cm(2)/(V s), which exceeds the mobility values of state of the art amorphous silicon based TFTs by ∼100 times. The active device stack of WSe2-hBN-graphene was found to be more than 88% transparent over the entire visible spectrum and the device characteristics were unaltered for in-plane mechanical strain of up to 2%. The device demonstrated remarkable temperature stability over 77-400 K. Low contact resistance value of 1.4 kΩ-μm, subthreshold slope of 90 mv/decade, current ON-OFF ratio of 10(7), and presence of both electron and hole conduction were observed in our all two-dimensional (2D) TFTs, which are extremely desirable but rarely reported characteristics of most of the organic and inorganic TFTs. To the best of our knowledge, this is the first report of all 2D transparent TFT fabricated on flexible substrate along with the highest mobility and current ON-OFF ratio.
منابع مشابه
DIRECT FABRICATION OF a-Si:H THIN FILM TRANSISTOR ARRAYS ON PLASTIC AND METAL FOILS FOR FLEXIBLE DISPLAYS
In this paper we describe solutions to address critical challenges in direct fabrication of amorphous silicon thin film transistor (TFTs) arrays for high information content active matrix flexible displays for Army applications. For all flexible substrates a manufacturable handling protocol in automated display-scale equipment is required. For metal foil substrates the principal challenges are ...
متن کاملFlexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors
Flexible and transparent electronics have been studied intensively during the last few decades. The technique establishes the possibility of fabricating innovative products, from flexible displays to radio-frequency identification tags. Typically, large-area polymeric substrates such as polypropylene (PP) or polyethylene terephthalate (PET) are used, which produces new requirements for the inte...
متن کاملSelf-Assembled Nanodielectrics (SANDs) for Unconventional Electronics
The field of unconventional electronics represents a new opportunity for the semiconductor and electronics industries.1 This broad field encompasses both “printed organic/inorganic” and “transparent” electronics. The first technology aims at the fabrication of extremely cheap electronic devices such rf-id tags, ‘smart’ cards, flexible electronic paper, and backplane circuitry for active matrix ...
متن کاملInstability of light illumination stress on amorphous In–Ga–Zn–O thin-film transistors
Suehye Park (SID Student Member) Abstract — Amorphous Edward Namkyu Cho Ilgu Yun In–Ga–Zn–O thin-film transistors (TFTs) have attracted increasing attention due to their electrical performance and their potential for use in transparent and flexible devices. Because TFTs are exposed to illumination through red, green, and blue color filters, wavelength-varied light illumination tests are require...
متن کاملFabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications.
By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS(2) thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS(2) channel ensure highly reproducible device fabrication and operation. This flexible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2014